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This paper represents an extension of [ 1 I : the idea of the work is con- 
nected, on the one hand, with the studies of the Chinese scientist, 
Chien. [2 1 in which the deflections of circular plates are determined 
by means of expansions of the stresses in poners of the deflection of 
the center of the plate, and. on the other hand, with the work of Dush- 
tar1 13 1 on the semi-nonlinear treatment of the problem of the deter- 
mination of deflections of shells. In 13 1 the nonlfnear equations are 
linearized with respect to the higher harmonics of the deflection in 
stress functions, and the non-linearity with respect to the fundamental 
harmonic of the deflection having the largest amplitude is taken into 
account. This permits the inclusion of the principal part of the non- 
linearity connected with the large deflections and considerably slmpli- 
ffes the calculations. 

At each step of the consecutive approximations presented in this work 
the equations are likewise foand to be comparatively satisfactory rith 
respect to the fundamental harmonics of the larger amplitudes; the de- 
termination of the higher harmonics of the deflections and the stress 
function IS reduced to the solution of linear equations. Since the 
higher harmonics are usually small and their frequencies high, in deter- 
mining them the curvature of the shell and the nonlinearities of the 
problems have been dlsregarded. 

1. lhe equations of the theory of shallow shells may be written in 
abbreviated form [4 1: 

AW = Eh(+[w, w] + [w, UP]) (1.1) 

177 
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DA% + [w”, aZ] + Iw, @,I = pP ! D= 
Ehs 

12 (1-q > (l-2) 

using the notation 

1% @I = ~wxll~xu - WyyQcx - Wc&t~, [w, WI = 2 (wxvZ - lU,,Wuy) 

W - PWJax~, xx - A’W = Wax,, + 2wxryy + w~,,~,, 

Here E is the modulus of elasticity, h the thickness of the shell, v 

Poisson’s ratio, tip the height of the shell above the foundation before 

deformation, o the deflection, p the amplitude of the loading of the 

shell, P the loading function, Cp the stress function in terms of which 

the membrane stresses T,, T,., T zy are readily expressed as ~11 as the 
strains of the middle surface c *, E y’ 5y; for example, 

T, = Q)m,, Ex = & (@)yar - va%,) = UlX + f wx2 + w,w,o (1.3) 

where ul, uz are the displacement components in the tangent planes to 

the shell. 

It is easy to obtain the required similarity theorem [ 4,s ] . Intro- 

duce the notation 

v 0 = w”lh, v = w/h, ul’ = q/h= W = fDjEh3, us* = ulJh= 

where v” is the reduced height of the shell above the base, u the re- 
duced deflection. Dividing (1.11 and (1.3) by Eh3, (1.2) by Eh’ and (1.41 

by h2, one obtains 

nQV = $[v, v] + [v, v”] 

1 
--- A2v + [v’, 0,‘) + Iv, W] = & P 
12 (1 - vy 

T,’ = T,/Eha = G&‘, Q,,’ - vu%,* = UIXf + + vx2 + vxvxc 

Using these relations, it may be deduced that two shells having the 

same relative height rP above the bases, differing only by the modulus 

of elasticity and thickness and having the s8me relative geometric 

dimensions will experience the identical reduced deflections v = w/h, 
provided the reduced transverse loads p/Eh’ and the reduced tangential 

displacements of the edges of the shell u,/h’ and u2/h2 are identical 
and the longitudinal edge loads are related to each other as Eh3. 

2. Taking into consideration the above similarity theorem, one may 

make the deduction that in order to obtain the relationship between the 
reduced loads p/Eh’ and the relative deflections w/h it is sufficient to 

study a shell of any arbitrary thickness and any modulus of elasticity. 



Using this fact to improve the rate of convergence of the successive 
approximations, at each step of the approximations one will not only 
change the deflections but also the loading, the thichnass aad the mod- 
ulus of elasticity of the shells and their dimensions in the sama manner 
in order to obtain more exact satisfaction of the equations. 

All the geometrical dimensions, except for the thickness of the shell, 
will be left unaltered. 

3. Description af the rrethod. Consider s shallow shell, freely 

supported ax clsqed along the edges and under transverse loading. Using 
the relation 18 = hue , Equations (1.1) and (1.2) will be reduced to the 
form 

AZ@ = 8% (+ fzu, W] + h [r”, w]} 

A% ^;I D-’ {- h [v”, @CD] - [w, (D] + pP) (3.1) 

Substituting ii = \I 12fl- ~~~~~~~, one obtains 

AW = ,%(;I w> WI + kQ2(1 -Y~)D/E~ [u”, w]) (3.2) 

A% = D-1 (- fw, aPj -i_ pP - $392 (i -P) Dj-Ets [P”, U@J) (3.3) 

Substitute now the arbitrary values Eh = Wh), and some approximate 
expression for the deflection Y 5: wg of the shell in the original 
approximation and determine from the equation 

AW, = (Eh), ($[w,, WJ -+ J7l2 (1- v”) D / (Eh), [u’, 20~1 ) (3.4) 

the function @a, satisfying the support conditions of the shell. sub- 
stituting the found value into (3.31, solve for o, with n t L the equa- 
tion 

(3.5) 

Aeu;, = D+ (-- &_ It (D,- J i- ASP - $42 (1 - ~7 D~~~~~~-~ W, %--, 11 

Its solution will be presented in the form wn = w,’ + p,,n~,?,. where 
W cc is that part of the deflection which depends on the external load- 

ik Pa* 

This quantity will be determined from the condition of equality in 
the nth and (n + 11th approximations of a certain generalized displace- 
ment Cla, 41; the symbol fso, #) denotes the scalar product of the de- 
flection function into some approximately selected function #, consider- 
ed as vectors of a functional space. In the capacity of such a general- 
ized displacement it is convenient to choose the generalized displace- 
ment for which the rigidity of the shell is s&lest. Since the smallest 
rigidity is obviously attached only to one of the orthogonal, bet\meen 
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themselves, generalized displacements, it follows that if the general- 
ized displacesmnts of small rigidities are equal, the total displacements 
will differ but little from each other. 

However, as will be shown later, the convergence will be sufficiently 
good even in the case when the function q5 does not correspond to minimum 
rigidity of the shell. For example, in order to simplify the calculations, 
one may take in the capacity of the function q5 the Dirac function and 
determine the quantity pa from the condition of equality of the deflec- 
tion of the center of the shell a in two consecutive approximations 

(3.6) 

WI(a)= %‘(a) +p&%I’(a) = w+l(~)~ pn = {wn-,(~)-w~'(~)~/w~'(~) 

The following approxismtions for 0 are obtained by means of the solu- 
tion for n I 1 of the equations 

AW,, = (Eh),, (: [wn. wnl + VI2 (2 -v’) D / (Eh)n lr”, wnl ) (3.7) 

‘lbe solution will depend on the rigidity in extension WI),. This 
last quantity will be determined so as to fulfil the condition 

P”, ‘p) = (K-l 3 $1 (3.3) 

for some function 9. Using the relations (3.9) 

hn = V/12(1 - v’) D / (J=)*, E, = (Eh)n / h, (D = EohoS/ 12 [I -v”j) 

the corresponding values of the thickness hs and modulus of elasticity 
Es of the shell in the nth approximation will be determined, where for 
this purpose the cylindrical rigidity E,,h,*(l- v*) will be the ssme for 
all approximations. 

Since the solution of the equation (3.7) is determined exactly only 
within a linear function of the coordinates which does not influence the 
magnitude of the membrane forces (membrane forces are determined by 
second derivatives, these derivatives of linear functions are equal to 
zero), the function 9 will be chosen orthogonal to the linear functions 

As a result of the above process of successive approximations one may 
obtain sufficiently exact corresponding values of the deflections, 
stresses and stress functions for shells of a certain thickness (the 
thickness of the shell and its modulus of elasticity are determined in 
the process of calculation). Changing the original approximation a~,,, one 
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may establish a continuous set of values, corresponding to each other, 
of reduced deflections and loads. Analogously, one obtains the subsequent 
approximations. 

In order to clarify the above study, consider the solution of the 
equation 

Aeut,=j, (3.11) 

by the method of Fourier; f, denotes here the right-hand side of Equa- 
tion (3.5). Expand the function f, in eigen functions of the operator 
A', i.e. in functions ~5; satisfying the boundary conditions of the 
support of the shell and the equations 

Api = bipi (i = i.Z,...). jn = &*,i 

lbe solution of (3.11) will be sought in the form 

(3.12) 

Substituting (3.13) and f, from (3.12) in (3.11), one finds, taking 
the first relation (3.12) into consideration, 

(3.14) 
1 1 

Gnqwing coefficients of(6i on both sides of this equation one ob- 
tains 

Obviously, the eigen values of the operator AZ form a rapidly increa- 
ing sequence; hence the 
considerably smaller in 

magnitude X, of the first eigen value will be 
absolute value than the remaining eigen values 

Therefore, the first term of the sum (3.15) will often be larger in 
magnitude than the sum of the remaining_terms of the series, In order to 
achieve a greater rate of convergence it is desirable to change the load 
at each approximation step such that the coefficients fnl remain un- 
changed, the other coefficients being small so that they will change but 
little. Under these conditions the consecutive approximations will be 
close to each other, and this will mean rapid convergence of the approxi- 
mations. 

Since the exact values of the eigen fuuctions #i are dcmmm, one may 
regulate the loads for the execution of the calculations, in order to 
keep-constant the quantities 
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Since the first eigen value is often a quantity which is much smaller 
than the remaining values, one has the approximate equality 

(3.~7) 

On the strength of this approximate equation the equality of the 

may be approximately replaced by the equality 
Fzc;fii~f =prktX,, $1 = (I"_ 1' $1. 

This justifies the proposed procedure of the correction of the load- 
ing. It should be noted that the equality (3.17) will be the more exact 
the closer the function # is to the first eigen function. In the capa- 
city of this function one may recoarnend the use of the function ma which 
has as fundamental component the first eigen function g$; homver, if 
this is too difficult for practical calculations, then this recomnenda- 
tion may not be maintained. 

(Note. In an analogous manner one raw correct at each step of approxi- 
mation the thichness of the shell h in such a manner that there will be 
the possibility of keeping unchanged the component of the expansion of 
the stress function in eigen functions corresponding to the least non- 
zero eigen value (a linear function of coordinates is an eigen function 
of the zero eigen vaIue of the operator A'). 

It may be expected that the above method of successive approximation 
vi11 give faster converging consecutive a~Rroximations and its region 
of convergence will be rider than those of the earlier known methods. 
This may be expected, since for the above method at each approximation 
step the displacement components and stress function components of small 
rigidity remain unchanged,and only the components of the deflection and 
the stress functions for the higher eigen functions of larger rigidity 
change, which generslly speaking are small in value: therefore, it may 

be expected that their changes at each approximation step will lfkewise 
be small. i.e. the process mill be fast convergfng. 

Obviously, the advantage of the described method over the previous 
methods of successive approximation is only evident in those cases where 
the first non-zero eigen value of the operator A2 is considerably less 
than those of the remaining eigen values.) 

4. Application of the method of successive approximations may be some- 
what simplified by a modification which gives it the form of a method of 
expansion in series of pQwers of a small parameters. 
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Let Equations (3;2) and (3.3) be presented in the form 

A2(D=~~Eh(~[w,za]~-1/12(l-vva)D/~h [u”, w]) (4.1) 

Axw = pD-l {- IW, @] - VI2 (1 -v”) D/ Eh Iv”, (I’]} + D-‘pP t4e2) 

The quantities 10, a, Eh will now be sought in the form of the power 
series 

P=p~+~PI+~2p2+..., w=%fpw,+[',~2-!-...9 

D=p@&L2@,f..., Eh = B, + pB, + p2B2 ---a.. (4.3) 

where B, is an arbitrary positive nunber. 

Substituting these expressions in (4.-l) and (4.2) and comparing co- 
efficients of the Maclaurin expansions in powers of /.I on the left- and 
right-hand sides of the equations, one may obtain a series of recurrence 
relations for the successive determination of the coefficients in the 
series (4.3). 

In addition to these relations, one must also use the equations 

i.e. the equations 

(wn, (p) = 0 for fi > 0 (cpn, +)=O for n>i 

which are employed for the determination of the coefficients pi and Bi. 

An example of the application of the method of expansion in a small para- 
meter follows in the next section. 

5. Example I. In order to compare different versions of the method of 
successive approximations let us consider one of the few problems which 
have an exact solution. namely, the problem of Bubnov on the cylindrical 
bending of a plate of infinite length in one direction with its long 
edges supported In such a wax that these edges may not move, but can 
freely rotate. The origin of coordinates will be placed at the middle of 
the plate and the x-axis parallel to the short side of the plate. 

The membrane force TX, arising in the plate, is determined by its re- 
lative extension [4 1 

1 

s 

W2 
e dx, T, -- VT x 

--I 
(5.1) 
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This force is the same at all points of the plate. The stress function 
has the form 

@=T,fy2;+vT,ixa (5.2) 

The equilibrium equations and boundary conditions are knonn to have 
the form 

Da%.XXX = P + Tzwxx. u’(l)=w(-z)=wwxx(2)=w,,(--l)=0 (5.3) 

As an initial approximation for the deflection the deflection func- 
tion will be chosen which is obtained from the elementary theory of in- 
finitesimal deflections of plates, not taking Into account membrane 
stresses: 

Giving B,, and he arbitrary values, approximate values of the membrane 
forces T,,, will be calculated with the aid of (5.1): 

VW, ’ woxs 
T - x0;= (1 - 3) I s 

pdx 2 
IS,51 (Eh),wo’ 

(1 - 9) 12 ((Eh), = 4&o) (5.5) 
-1 

These values are then substituted on the right-hand side of the first 
equation (5.3). nhlch Is then solved for the boundary conditions (5.3) 
for w. One obtains 

Dw 1xXxX = P -I- Tx,,wwzv D = E&,s/(Z - v2) (5.6) 

The magnitude of the load p1 is now determined from the condition of 

equality of the deflections of the middle surface of the plate in the 
initial and first approximations ~~(0) = ~~(0): 

61 
5 D-‘1’~~ = ho, - zjij l’D-~Ttiw,,+ 24 PI = 240 (w#) + 9.70T, (w&,) 

substituting this expression in (5.7). one finds the correction 
to the initial approximation y,(z) 

(5.3) 

6,(r) 

(5.9) 

Further, putting in (5.1) 6A P (EM,, and evaluating nith the aid of 
(5.5) and (5.10) the new approximation for the membrane forces, one 
f lnds 
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T 

T,, = fi (0.000545 (PD-‘T,.J’ + O.O4464PD-‘T,+ 15.54) woP (5.11) 

If in correspondence with the Ideas of the method of expansion in 
powers of a small parameter one neglects in (5.10) the integral of the 
square of the small correction a,* in comparison with other terms as a 
quantity of higher order of smallness, one obtains the formula 

T Xl = ~(0~M4641PD-‘T~~+ 15.54) wo= (5.12) 

In accordance with the formula (5.2) the values of the stress func- 
tions in the Initial and first approximations are equal, respectively to 
the quantities 

In the present case Equation (3.8) reduces to 

Substituting In it the last relation (5.12) and (5.15). one finds the 
equation for the determination of (Bhjl: 

++ (0.4464l=D-‘T,,, + 15.54) w,,~= 
(Eh), 

(i _ $) 1’ ~5.54%S 

Solving this equation for (Bhjl and replacing To by its expression 
(5.5). one has 

p!3h)I = (Eh), [i+ +$ @y]” (5.14) 

Further. from (3.9). one finds the thickness and the modulus of elas- 
ticity of the plate in the second approximation 

hl = vi2 (1 - v~) D/( Eh), , El = (Eh),h (5.15) 

Using (5.5A. (5.7) and (5.1s). one may by use of a series of increas- 
ing values of v,, evaluate the corresponding approximations of the deflec- 
tions, loads, membrane forces, thickness of the plate and their q oduli of 
elasticity. Thus, the solution of the problem is not only obtained for 
one specified plate, but for different loadings for different plates: 
however. this is completely sufficient for the purpose of construction 
of graphs of the dependence between the reduced load p1/B1h4, the reduced 
deflection ml and the reduced membrane stresses T1/Blh 3 

. 
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Using the preceding 
mate relations between 
load: 

Pl -- 
E&’ - 

However, the use of 
may with equal success 
reduced deflection and 
above. 
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relations one may deduce the following approxi- 
the deflection of the middle of the plate and Its 

0.4395 wy + 1.3335 * _ ();*~;y$O),k 
1 
)* (5.16) 

these formulas is not at all necessary, as one 
construct the graphs of the relations between the 
the reduced loading a8 this has been indicated 

In the following table are given the results of computations of the 
values of the reduced loads p” = pl’/Bh’, causing different relative de- 
flections of the middle of the plate; in the first column are stated the 
relative deflections of the middle of the plate, In the second the 
corresponding exact values of the reduced stresses, in the third and 
fourth the approximate values of the loading evaluated by the method of 

Chien [2 I by means of expansion of the loading In posers of the deflec- 
tions in the second and third approximations, in the fifth column are 
found the values of the loading, evaluated in the second approximation 
by the described method with the aid of Formula (5.16). 

Next to the approximate values are given the percentages of their 
relative errors. 

w/h I p” exact 

0.395(4) 
0.729 
1.987 
1.44 
1.7(8) 
2. i(4) 
2.5(6) 
3.2(2) 

0.225(9) 
0.843 
2.24 
4.8(O) 
8.9(3) 
G.(O) 
23.(4) 
48.(8) 

p”[ 1 1 2nd 
approximation 

0.225(7), O.i% 
0.835, i 
2.19, 2.7 
4.6(4). 3.3 
8.4(O), 6 
14.2, 6 
22(O), 6 
46(O), 6 

p”[ 1 1 3rd 
approximation 

0.226, 0.05% 
O-845(6), 0.4 
2.20, 0.9 
4.9(S). 3.1 
9.3(O), 4.5 
16.4, 9 
26(9), 17 
63(2) v 3(O) 

d” (5.16) 2nd 
amroximatlon 

0.225(8), 0.05% 
O-841(4), 0.25 
2.23, 0.5 
4.8(3), 0.6 
8.9(6), O.(4) 
15.6, 4 
25(3), 8 
580). 2(O) 

6. Bxo~ple 2. Let us now consider the problem of the determination of 
the deflection of a circular plate of radius o which is subjected to a 
uniformly distributed pressure p. The edge of the plate Is assumed to be 
rigidly clamped; this means that the rotations and displacements of the 
edge of the plate are assumed to vanish. Let r denote the distance from 
the center of the plate, I) the deflection, N the magnitude of the radial 
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gesbrane stress, IT the modulus of elasticity, v Poisson’8 ratio and h 

the thickness of the plate. 

AS has been shown in 12 I, Introducing the new coordinate 

x = 1 -- tr2ja2) 

allows UB to give the compatibility equation and the corresponding 

ary condition the form 

I(1 -x), N), = - 5 Ehw%’ 2N, - (1 -v){N=O for x =O 

(6.1) 

bound- 

(3.2) 

The magnitude of the radial membrane force N is related to the stress 
function @ by 

N = cD,/r = - 2@,la2 (6.3) 

The equilibrium equation and boundary conditions for the deflection 
have the form (cf. [ 1 I) 

- W - 2) w&z = 
3(l-9) a4p 

4 . m-3(1-va)Nwx, w=w,~=O for x=0 

(6.4) 

AS initial approximation for the form of the deflection, the deflec- 
tion shape of the plate for infinitesimal loading will be taken: it is 
determined by (8.4). if one sets there N = 0; 

W@ (2) = w,G (6.5) 

Substituting this value ug(x) for m on the right-hand side of (8.2). 
replacing B and h by arbitrary positive numbers Be and ho and solving the 
corresponding equation for N, one finda 

No= EOh,w,’ $ 
[ j&+z+f+2s] VW 

The corresponding values of the stress function are determined by 
means of the solution of the equation [cf. (8.3)1 2@,x/a2 = Ng. 

The solution of this equation has the form 

(6.7) 

Substituting (6.5) and (6.6) for w and N on the right-hand side of 
(6.4) the re8UlttUIt equation will be solved for wl; the magnitude of the 
load p = p1 in the first approximation will be chosen such that the de- 
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flectlons of the center of the plate in the first and Initial approxi- 
sations coincide; as a result of the computations one finds for the de- 
flection 

Wl@) = wo (4 + 59 (4 W) 

S,W(Z)=+ 1 -vy 22 (i - 2) E 63--&J 
i_-v +23=+69+2* 1 (6.9) 

for the load 

A= -$ a4 ;f!v*) I to, + g (173 - 73v) 3 
1 

(6.10) 

Further, according to (3.4). the qaantltr @I will be determined by 
seam of solution of the equation 

I(1 - 2) N,],, = - + ElhlWlS, 2N,, -(l -v)N1=O for r=O (6.11) 

and the successive deterslnatlon of Cp fros the equations [cf. (8.311 

2% 
x 

--= N,, 
4’ ,,.,=-+dz+ ‘&(O) (6.12) 

If one sabstltotes In (8.11) the expressions (8.8) and (8.B) and In 
correspondence with the sethod of a ssall paraseter neglects the square 
of a smll correction and Its products, one may obtain fros (8.12) 

The quantity B,h, will be deterslned from the condition of eqaallty 
of the man vahes of the face I in the Initial and first aDproxlmtions 

1 I 2 
0,=--~fa’&h* @ I ( 1 

-- *_vx+~2q- s -h++ ) 29 woa+ 

In accordance rlth (6.7) and (6.12) this equation redtwes to the con- 
dition 

m (4 - 01 (ON (6.14) 

shlch corresponds to (3.8) for 

where 6(x) Is the Dirac-Dlrlchlet function. 
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If one substitutes in (6.14) the earlier exvreesion iOr the stress 

function, one finds for Y = 0.3 

0.fi57E,,h,,wQ’ = E,hl 
( 

W0’ O.sS?w,’ + 0.0257 w 
) 

(6.15) 

Since it has been agreed to change the quantlties Blh in such a manner 
that for this the cylindrical rigidity does not change 

E&8 = Elhlf . . . (6.16) 

Thus, dividing the corresponding terms of (6.15) by the terms of 
(6.16) one obtains 

0.657w,* 

hea 
= -& (0.657~0’ -+ 0.0257 s) , 4’ = hl’ - 0.0392w01 (6.i7) 

Replacing in accordance with (6.16) in (6.10) Beho by B,h13 and 8x(- 
pressing In the same formula the quantity ho2 by hl2 from (6.17). one 
may obtain for v = 0.3 

Pl - - 5.86 (2 + 0.544 (=py [t - 0.0392 &y-l} 
Elhla - d (6.18) 

7. For cases of supports of shells for uhich the equations of the 
linear theory of shells are easily solved, oue my apply a faster con- 
verging method of successive approximation. 

For this purpose let W = CpdEh aud reduce the system of equatious 
(3.2) and (3.3) by meaus of transfer of all linear terms to the left-hand 
side to the form 

A’6--~i2(i-~~)D[v, w)=+JEh[w, wj (7.1) 

DA%+ V/2(1- v”) D [v, a.1 = P - v/Eh [w, 61 (7.2) 

The system of equations will now be solved successively 

A2UL1 -_)/12(1- v”) D [v, to,+ll = + d(W,--, km wnl (7.3) 

DAN-I + ‘t/12 (1 -v*) D [u, @;+,I = pn+J’- @hn+l kc @:I (7.4) 

For this purpose the quantities @h),+ 1 aud p,+ 1 at each step of 
approximatiou are adjusted so that the quantities 

remain uuchauged. 

lhe above method may be applied without change to the determination 
of the deflections of shells uuder longitudinal edge loadings. Applica- 
tion of the method of perturbation aud of the method of successive 
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approximations to longitudinal bending without utilization of the 
similarity theorem for the improvement of the convergence has been given 
in the papers I6,7 1 . 
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