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This paper represents an extension of [1 ]; the idea of the work 1s con-
nected, on the one hand, with the studies of the Chinese scientist,
Chien, [2 ] in which the deflections of circular plates are determined
by means of expansions of the stresses in powers of the deflection of
the center of the plate, and, on the other hand, with the work of Mush-
tari [3] on the semi-nonlinear treatment of the problem of the deter-
mination of deflections of shells. In [3 ] the nonlinear equations are
linearized with respect to the higher harmonics of the deflection in
stress functions, and the non-linearity with respect to the fundamental
harmonic of the deflection having the largest amplitude is taken into
account. This permits the inclusion of the principal part of the non-
linearity connected with the large deflections and considerably simpli-
fies the calculations.

At each step of the consecutive approximations presented in this work
the equations are likewise found to be comparatively satisfactory with
respect to the fundamental harmonics of the larger amplitudes; the de-
termination of the higher harmonics of the deflections and the stress
function is reduced to the solution of linear equations. Since the
higher harmonics are usually small and their frequencies high, in deter-
mining them the curvature of the shell and the nonlinearities of the
problems have been disregarded.

1. The equations of the theory of shallow shells may be written in
abbreviated form [4]:

220 = Er {1 [w, w] + [w, v°]} (1.1)
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DA% + [w°, ®] + [w, @] = pP (D= T%?W) (1.2)

using the notation

lw, (D] = zwxvmxy - wyymxx - wxxmyu, [w, U)] = 2 (wxy2 _— u)xxwuv)

Wyx = 0*w/02?, A*W = Wyrxx + 2Waxyy + Wyyyy

Here E is the modulus of elasticity, h the thickness of the shell, v
Poisson’s ratio, »° the height of the shell above the foundation before
deformation, » the deflection, p the amplitude of the loading of the
shell, P the loading function, ® the stress function in terms of which
the membrane stressesT_, T, Tz are readily expressed as well as the
strains of the middle surface €0 €yr Epyi for example,

1
Te=®, &=pg @y —v0x) = +gw +war,® (1.3)

where u;, u, are the displacement components in the tangent planes to
the shell.

It is easy to obtain the required similarity theorem [4,5]. Intro-
duce the notation

Y =ulh, v=wh, u"=u/h? @ =O/ER, uy*=u,h®

where 1° is the reduced height of the shell above the base, v the re-
duced deflection. Dividing (1.1) and (1.3) by ER}, (1.2) by Eh* and (1.4)

by h?, one obtains

D2 = 3-[v, v] + [, v°)

1 O »* -
=y A% 12 Ol o, O =5 P
T =T, ER =D, , Dy, — Vs’ = " + 0% 4 0202

Using these relations, it may be deduced that two shells having the
same relative height +° above the bases, differing only by the modulus
of elasticity and thickness and having the same relative geometric
dimensions will experience the identical reduced deflections v = w/h,
provided the reduced transverse loads p/Eh* and the reduced tangential
displacements of the edges of the shell ul/hz and uz/h2 are identical
and the longitudinal edge loads are related to each other as Eh3.

2. Taking into consideration the above similarity theorem, one may
make the deduction that in order to obtain the relationship between the
reduced loads p/Eh* and the relative deflections w/h it is sufficient to
study a shell of any arbitrary thickness and any modulus of elasticity.
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Using this fact to improve the rate of convergence of the successive
approximations, at each step of the approximations one will not only
change the deflections but also the loading, the thickness and the mod-
ulus of elasticity of the shells and their dimensions in the same manner
in order to obtain more exact satisfaction of the equations.

All the geometrical dimensions, except for the thickmess of the shell,
will be left unaltered.

3. Description of the method. Consider a shallow shell, freely
supported or clamped along the edges and under transverse loading. Using
the relation v = ht®, Equations (1.1) and (1.2) will be reduced to the
form

AN® = Eh {—;;— [w, w] + R[?°, w}}
At == D7 {(— h[v°, D] — [w, @] + pP} (3.1)

Substituting k = v 12(1 ~ +?)D/ER, one obtains

A® = Eh{51w, w)+ VIZA —D/Ek [+, w)} (3.2)
A%w = D {—Jw, O]+ pP—V 12 (1 — ) D/ER [°, @]} (3.3)

Substitute now the arbitrary values Eh = (Eh), and some approximate
expression for the deflection w = wy of the shell in the original
approximation and determine from the equation

8D, = (ER)y {5 twor w) + VIZA =B D7 (ER,[2°, w,] | (3.4)

the function @, satisfying the support conditions of the shell. Sub-
stituting the found value into (3.3), solve for w, with n = 1 the equa-
tion

(3.5)
A%y = D [ 1, ol + Prp—V 121 —¥*) D{(ER)y [V°, Dnoy ]}

Its solution will be presented in the formw, = w ’ + p w “; where
», “ is that part of the deflection which depends on the external load-

ing p,.

This quantity will be determined from the condition of equality in
the nth and (n + 1)th approximations of a certain generalized displace-
ment (w, ¢); the symbol (w, ¢) denotes the scalar product of the de-
flection function into some approximately selected function ¢, consider-
ed as vectors of a functional space. In the capacity of such a general-
ized displacement it is convenient to choose the generalized displace-
ment for which the rigidity of the shell is smallest. Since the smallest
rigidity is obviously attached only to one of the orthogonal, between
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themselves, generalized displacements, it follows that if the general-
ized displacements of small rigidities are equal, the total displacements
will differ but little from each other.

However, as will be shown later, the convergence will be sufficiently
good even in the case when the function ¢ does not correspond to minimum
rigidity of the shell. For example, in order to simplify the calculations,
one may take in the capacity of the function ¢ the Dirac function and
determine the quantity p, from the condition of equality of the deflec-
tion of the center of the shell a in two consecutive approximations

(3.6)

W (@) = wn' (@) + Pan” (@) = Wn_; (), pn = {Wn— (8) — wy' (a)} / w," (a)

The following approximations for ® are obtained by means of the solu-
tion for n = 1 of the equations

N®, = (ERja {5 [wn, wal + VIZA—V) D/ (BR)r  [0° wal | (3.7)

The solution will depend on the rigidity in extension (Eh) This
last quantity will be determined so as to fulfil the condition

(@n, @) = (Pnz, ) (3.8)

for some function . Using the relations (3.9)

b= V12(0—v*)D/(ER),, En=(Ebjn/ha (D= Eph?/12[1 —v*)

the corresponding values of the thickness h, and modulus of elasticity
E, of the shell in the nth approximation will be determined, where for
thls purpose the cylindrical rigidity E h 2(1 - v2) will be the same for
all approximations.

Since the solution of the equation (3.7) is determined exactly only
within a linear function of the coordinates which does not influence the
magnitude of the membrane forces (membrane forces are determined by
second derivatives, these derivatives of linear functions are equal to
zero), the function ¥ will be chosen orthogonal to the linear functions

(1l q)) = Ov (Z, (b) = 0’ (yv q)) =0 (3'10)

As a result of the above process of successive approximations one may
obtain sufficiently exact corresponding values of the deflections,
stresses and stress functions for shells of a certain thickness (the
thiclmess of the shell and its modulus of elasticity are determined in
the process of calculation). Changing the original approximation w,, one
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may establish a continuous set of values, corresponding to each other,
of reduced deflections and loads. Analogously, one obtains the subsequent
approximations.

In order to clarify the above study, consider the solution of the
equation

Atw, = f, (3.11)

by the method of Fourier; f, denotes here the right-hand side of Equa-
tion (3.5). Expand the functxon fp in eigen functions of the operator
A?, i.e. in functions b satlsfymg the boundary conditions of the

support of the shell and the equations
[~

Alp = Ny (i=12,..), fo= Nfnii (3.12)

1

The solution of (3.11) will be sought in the form
oo
Wy = zwni?{ (3.13)

Substituting (3.13) and fp from (3 12) in (3.11), one finds, taking
the first relation (3.12) into conmderat.lon,

Ewni MNg; = E/m% (3.14)
1 1

.Cmparing coefficients of ¢, on both sides of this equation one ob-
tains

L (3.15)

Im
WniMi = fra, Wnt = 4, Wy, = -
1

A

-] 8

Obviously, the eigen values of the operator A’ form a rapidly increa-
ing sequence; hence the magnitude A, of the first eigen value will be

considerably smaller in absolute value than the remaining eigen values
Ay, A
2 T3

Therefore, the first term of the sum (3.15) will often be larger in
magnitude than the sum of the remaining terms of the series. In order to
achieve a greater rate of convergence it is desirable to change the load
at each approximation step such that the coefficients fp; remain un-
changed, the other coefficients being small so that they will change but
little. Under these conditions the consecutive approximations will be

close to each other, and this will mean rapid convergence of the approxi-
mations.

Since the exact values of the eigen functions ¢, are unknown, one may

regulate the loads for the execution of the calculations, in order to
keep_constant the quantities
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T = (0n) = D3 (0i9) (3.16)
1

Since the first eigen value is often a quantity which is much smaller
than the remaining values, one has the approximate equality
oo
fﬂn' f
(@ 9)=2 T (09 =" (90 9) (347)
f==1
On the strength of this approximate equation the equality of the
quantity f i f(n—.1) i may be approximately replaced by the equality
of the scalar proéucts W, ¢)= (w,_,, &)

This justifies the proposed procedure of the correction of the load-
ing. It should be noted that the equality (3.17) will be the more exact
the closer the function ¢ is to the first eigen function. In the capa-
city of this function one may recommend the use of the function w, which
has as fundamental component the first eigen function ¢,; however, if
this is too difficult for practical calculations, then this recommenda-
tion may not be maintained.

(Note. In an analogous manner one may correct at each step of approxi-
mation the thickness of the shell kh in such a manner that there will be
the possibility of keeping unchanged the component of the expansion of
the stress function in eigen functions corresponding to the least non-
zero eigen value (a8 linear function of coordinates is an eigen function
of the zero eigen value of the operator Az).

It may be expected that the above method of successive approximation
will give faster converging consecutive approximstions and its region
of convergence will be wider than those of the earlier known methods.
This may be expected, since for the above method at each approximation
step the displacement components and stress function components of small
rigidity remain unchanged,and only the components of the deflection and
the atress functions for the higher eigen functions of larger rigidity
change, which generally speaking are small in value; therefore, it may
be expected that their changes at each approximation step will likewise
be small, i.,e., the process will be fast converging.

Obviously, the advantage of the described method over the previous
methods of successive approximation is only evident in those cases where
the first non-zero eigen value of the operator A? is considerably less
than those of the remaining eigen values.)

4. Application of the method of successive approximations may be some-
what simplified by a modification which gives it the form of a method of
expansion in series of powers of a small parameters.
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Let Equations (3.2) and (3.3) be presented in the form

820 = pEh {E [w, 0]+ VT2 — W) D/ Ek [+, w] } (4.1)

A% = D (—|w, ®]— VYV 12(1 —+?) D/ Eh|v°, @)} 4+ D1pP (4.2)

The quantities w, ®, Ekh will now be sought in the form of the power
series

P =P+ P+ upst., W=w,+pwy+ prw+...,
m - p.@l +y-2®’+.-., Eh- = BO + P’Bl + {1232 "}'... (4.3)

where B, is an arbitrary positive number.

Substituting these expressions in (4.1) and (4.2) and comparing co-
efficients of the Maclaurin expansions in powers of p on the left- and
right-hand sides of the equations, one may obtain a series of recurrence
relations for the successive determination of the coefficients in the
series (4.3).

In addition to these relations, one must also use the equations

(wo + pwy 4. 01wy, ¢) = (Wo + pwi+...+ p L wny + prwn, @)
(l"a)l"' e (Dn-l ’ (P) = (P’q’l +.tpn D, + P‘"(Dm 4’)

i.e. the equations

(wn, ¢) =0 for #>0 (g, ¢)=0 for n>1

vhich are employed for the determination of the coefficients p; and B,.
An example of the application of the method of expansion in a small para-
meter follows in the next section.

3. Ezample 1. In order to compare different versions of the method of
successive approximations let us consider one of the few problems which
have an exact solution, namely, the problem of Bubnov on the cylindrical
bending of a plate of infinite length in one direction with its long
edges supported in such a way that these edges may not move, but can
freely rotate. The origin of coordinates will be placed at the middle of
the plate and the x-axis parallel to the short side of the plate.

The membrane force 1;, arising in the plate, is determined by its re-
lative extension [4 ] .
3
Eh Wy
Te = g=y1 S 7 4o Ty= T, (5.9)
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This force is the same at all points of the plate. The stress function
has the form

® =T, ;yt+ T, ;22 (5.2)

The equilibrium equations and boundary conditions are known to have
the form

Do, . =p+Tw,, w(l) =w(—) =w () =w, (—)=0 (5.3)

As an initial approximation for the deflection the deflection func-
tion will be chosen which is obtained from the elementary theory of in-
finitesimal deflections of plates, not taking into account membrane

stresses:
w, (%) = w, [(;)‘—6 G)z +5] (5.4)

Giving Eo and ho arbitrary values, approximate values of the membrane
forces 1;0 will be calculated with the aid of (5.1):

l
(Eh)e S Wo, 2 15,54 (Eh)gw,?

T 5 dr=—g_ma ~  (Bh)y=Ehy) (5.5)
1

x0;— (1 —v3) !

These values are then substituted on the right-hand side of the first
equation (5.3), which is then solved for the boundary conditions (5.3)
for w. One obtains

Dw iyxx =P+ T o Woxxr D = Eghy®/(1 —v?) (5.6)
i (#) = BD7IT "’°[ ( ) ( ) ( ) 30] +24D e [(7) - 6@2*’5]
(5.7

The magnitude of the load p, is now determined from the condition of
equality of the deflections of the middle surface of the plate in the
initial and first approximations -1(0) = 9,(0):

61 5
— 35D T oot g DM =5w,,  p1= 24D o/l + 9.T6T (we/ly)  (5-8)

Substituting this expression in (5.7), one finds the correction 81(z)
to the initial approximation -o(z)

@ =@ +u@, @ =D T 0[5 -5 +xG)] ¢

Further, putting in (5.1) Eh = (Eh),, and evaluating with the aid of
(5.5) and (5.10) the new approximation for the membrane forces, one

finds
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(5.10)
1 l
Eh 1 _(ER) 1 . 1
31=—(i(-—v)’1) 1 S 3w = { S 5 Waytdz + S lwox(z) 8. dz + Sl 2‘“%}
— -l — —_—
AERL 1 000345 (BD-1T )t + 0.044641D-1T __ }- 15.54) w;?
== (D™ g 20 0 (5.11)

If in correspondence with the ideas of the method of expansion in
powers of a small parameter one neglects in (5.10) the integral of the
square of the small correction 8‘2 in comparison with other terms as a
quantity of higher order of smallness, one obtains the formula

(Ekn

T =7

(0 0446412 DT, - 15.54) wy? (5.12)

x1

In accordance with the formula (5.2) the values of the stress func-
tions in the initial and first approximations are equal, respectively to
the quantities

1 1 1 1
O, =Ty (E v+ iw’)' O, =Ty (5 v+ ;vz’)
In the present case Equation (3.8) reduces to
1 1 1 1
T, ([Eyz_}_;m]'q,) =T, ([-Eya_*_a_wa], ¢) mam T =T, (5.13)

Substituting in it the last relation (5.12) and (5.15), one finds the
equation for the determination of (Eh)lz
Eh) {Eh),
i ( ,)‘ 7 (0.4464BD7IT o + 15.54) wd= [ —a) i 15.54w¢*
Solving this equation for (Eh), and replacing T %0 by its expression
(5.5), one has

0.4874 (wo ]-—1 (5.44)

Bk, = (B[ 1+ o (7

Further, from (3.9), one finds the thickness and the modulus of elas-
ticity of the plate in the second approximation

= V12(1 —*) D/(ER),, Ey = (Eh)y/hy (5.15)

Using (5.5), (5.7) and (5.15), one may by use of a series of increas-
ing values of », evaluate the corresponding approximations of the deflec-
tions, loads, membrane forces, thickness of the plate and their moduli of
elasticity. Thus, the solution of the problem is not only obtained for
one specified plate, but for different loadings for different plates:
however, this is completely sufficient for the purpose of construction
of graphs of the dependence between the reduced load p1/31h4. the reduced
deflection »;, and the reduced membrane stresses T,/Eh 3.
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Using the preceding relations one may deduce the following approxi-
mate relations between the deflection of the middle of the plate and its
load:

wy (0)3/hy®

P1 , (0)
1 — 0.02143 (wy (0)/hy)? (5.16)

Tt = 0.4395 o 4 1.3335

However, the use of these formulas is not at all necessary, as one
may with equal success construct the graphs of the relations between the
reduced deflection and the reduced loading as this has been indicated
above.

In the following table are given the results of computations of the
values of the reduced loads p° = pl‘/Eh‘. cauging different relative de-
flections of the middle of the plate; in the first column are stated the
relative deflections of the middle of the plate, in the second the
corresponding exact values of the reduced stresses, in the third and
fourth the approximate values of the loading evaluated by the method of
Chien [2 ] by means of expansion of the loading in powers of the deflec-
tions in the second and third approximations, in the fifth column are
found the values of the loading, evaluated in the second approximation
by the described method with the aid of Formula (5.16).

Next to the approximate values are given the percentages of their
relative errors.

TABLE
o P°l1] 2nd PPl1] 3rd £ (5.16) 2nd
w/h p° exact approximation | approximation approximation
0.365(4) 0.225(9) 0.225(7), 0.1% 0.226, 0.05% 0.225(8), 0.05%
0.728 0.843 0.835, 1 0.845(6), 0.4 0.841(4), 0.25
1.087 2.24 2.19, 2.7 2.20, 0.9 2.23, 0.5
1.44 4.8(0) 4.6(4), 3.3 4.9(5). 3.4 4.8(3), 0.6
1.7(8) 8.9(3) 8.4(0), 6 9.3(0), 4.5 8.9(6), 0.(4)
2.1(4) 15.(0) 14.2, 6 16.4, 9 15.6, 4
2.5(6) 23.(4) 22(0), 6 26(9), 17 25(3), 8
3.2(2) 48.(8) 46(0), 6 63(2), 3(0) 58(9), 2(0)

6. Exzample 2. Let us now consider the problem of the determination of
the deflection of a circular plate of radius a which is subjected to a
uniformly distributed pressure p. The edge of the plate is assumed to be
rigidly clamped; this means that the rotations and displacements of the
edge of the plate are assumed to vanish, Let r denote the distance from
the center of the plate, » the deflection, N the magnitude of the radial
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membrane stress, E the modulus of elasticity, » Poisson’s ratio and A
the thickness of the plate.

As has been shown in [2 ], introducing the new coordinate
2 =1 — (r2/a?) (6.1)

allows us to give the compatibility equation and the corresponding bound-
ary condition the form

{4 —2), N), =—3 Ehw,? 2N, —(1—wN=0 for z =0  (6.2)

The magnitude of the radial membrane force N is related to the stress
function @ by

N=0r = —20/a (6.3)

The equilibrium equation and boundary conditions for the deflection
have the form (cf. [1])

3(1—v) ot
— [ —2) v ] = J——T——)—E—’I;—?»(i—v’)lvwx, w=wm=0 for 2z=0

6.4)
As initial approximation for the form of the deflection, the deflec-
tion shape of the plate for infinitesimal loading will be taken: it is
determined by (6.4), if one sets there N = 0;
w, () = wyx? (6.5)

Substituting this value ro(z) for » on the right-hand side of (6.2),
replacing E and h by arbitrary positive numbers Eo and ho and solving the
corresponding equation for N, one finds

2
No= thowo":— [T;—y +z+2+ 1'3] (6.6)

The corresponding values of the stress function are determined by
means of the solution of the equation [cf. (6.3)] 28, /d? = N,.

The solution of this equation has the form

@, (2) =—%a’ SN,dz+a>o ©) (6.7)
0

@y (2) = — Eohoa® 55 (12

1 1 1
a:-{—?z'—i-?zs—*—‘—z‘)-l-c
Substituting (6.5) and (6.6) for w and N on the right-hand side of
(6.4) the resultant equation will be solved for #); the magnitude of the
load p = P; in the first approximation will be chosen such that the de-
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flections of the center of the plate in the first and initial approxi-
mations coincide; as a result of the computations one finds for the de-
flection

Wy (7) = W, () + By (%) (6.8)
Blw(z)=':;—=‘(1 —v)z*(1— 1) ['831—:? +23x+8c‘+2:’] (6.9)

for the load
pr= ;“a, (";"""1,) {w,+ %0 ® (173 — 73v) ho'} (6.10)

Further, according to (3.4), the quantity ¢5 will be determined by
means of solution of the equation

(1 — 2) M)y = — + Exhywy?, 2N —(1—v) Ny =0 for z=0 (6.11)
and the successive determination of ® from the equations [cf. (8.3)]

20,

1x

3
—=E=M,  e@=—5

Nydz + @, (0) (6.12)

St

If one substitutes in (6.11) the expressions (6.8) and (6.9) and in
correspondence with the method of a small parameter neglects the square
of a small correction and its products, one may obtain from (6.12)

2 6.133
®‘=—%a’Elhx{%—(r:;=+%’+%=‘+%z‘)we+ 613
1—wvd) 160 — 104v 80 — 52v
+'(h’7560 "’0‘[ a—=wy *+t 71 ( R “)

501 — 249v 123 39 9
— B T8 F 7 ]}+°x<0)

The quantity Elhl will be determined from the condition of equality
of the mean values of the face N in the initial and first approximations

1 ¢ 1a
—a—SNodx: TSNldz
o 0

In accordance with (6.7) and (6,12) this equation reduces to the con-
dition

1 1
— 5 {®, (a) — Dy (0N} = — 55 {®4 (a) — @, (0O)} (6.14)
which corresponds to (3.8) for
¥ (z) = — 5 {38 {x—a)—3 (=)

where 8(x) is the Dirac-Dirichlet function.
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If one substitutes in (6.14) the earlier expression for the stress
function, one finds for v = 0.3

4
0.65TE yhgwo? = Exhy (0.657w,‘ + 0.0257 %) (6.15)

Since it has been agreed to change the quantities Elh in such a manner
that for this the cylindrical rigidity does not change

Ehg® = Eahs®, ... (6.16)
Thus, dividing the corresponding terms of (6.15) by the terms of
(6.16) one obtains
0.65Tw,? ¢
—6-'57'#— = —Ei,—‘- (0.657w.,’ + 0.0257 %ﬁ,—) ’ ho? = hy? — 0.0392w,* 6.17)

Replacing in accordance with (6.16) in (6,10) E°h°3 by Elhl"‘ and ex-
pressing in the same formula the quantity ho2 by hlz from (6.17), one
may obtain for v = 0.3

5.86 [w w, \3 2]~
o= 22 5+ oua () [1 - 0.0em (3]} (6.18)

7. For cases of supports of shells for which the equations of the
linear theory of shells are easily solved, one may apply a faster con-
verging method of successive approximation.

For this purpose let ®* = ® / Eh and reduce the system of equations
(3.2) and (3.3) by means of transfer of all linear terms to the left-hand
side to the form

A® — Y 1Z2(1 =V D[v, w] =1V Ek(w, w] (7.1)
DAw + Y121 =) Do, @)= P —V Ehjw, D] (7.2)

The system of equations will now be solved successively
A, , —VI2(T— ) Do, wnpsl = LV (ER)a—s[wn, wa]  (7.3)
DAYy + V12T —¥) D{v, ®ryal = pryrP —V Ehoyy [wa, @a) (7.4

For this purpose the quantities (Eh),, , and p_, , at each step of
approximation are adjusted so that the quantities

(@ny1, P=(@n, $)»  @Wnt1, 9) = (wn, 9)
remain unchanged.

The above method may be applied without change to the determination
of the deflections of shells under longitudinal edge loadings. Applica-
tion of the method of perturbation and of the method of successive
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approximations to longitudinal bending without utilization of the
similarity theorem for the improvement of the convergence has been given
in the papers [6,7].

4‘
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